Fits a C3 assimilation model to an A-Ci + CF curve
fit_c3_variable_j.Rd
Fits the Farquhar-von-Caemmerer-Berry + Variable J model to an experimentally measured C3 A-Ci + CF curve.
It is possible to fit the following parameters: alpha_g
,
alpha_old
, alpha_s
, alpha_t
, gamma_star
,
J_at_25
, RL_at_25
, tau
, Tp_at_25
, and
Vcmax_at_25
.
By default, only a subset of these parameters are actually fit:
alpha_old
, J_at_25
, RL_at_25
, tau
,
Tp_at_25
, and Vcmax_at_25
. This can be altered using the
fit_options
argument, as described below.
Best-fit parameters are found using maximum likelihood fitting, where the
optimizer (optim_fun
) is used to minimize the error function (defined
by error_function_c3_variable_j
).
Once best-fit parameters are found, confidence intervals are calculated
using confidence_intervals_c3_variable_j
, and unreliable
parameter estimates are removed.
For temperature-dependent parameters, best-fit values and confidence intervals are returned at 25 degrees C and at leaf temperature.
See below for more details.
Usage
fit_c3_variable_j(
replicate_exdf,
Ca_atmospheric = NA,
a_column_name = 'A',
ca_column_name = 'Ca',
ci_column_name = 'Ci',
etr_column_name = 'ETR',
j_norm_column_name = 'J_norm',
kc_column_name = 'Kc',
ko_column_name = 'Ko',
oxygen_column_name = 'oxygen',
phips2_column_name = 'PhiPS2',
qin_column_name = 'Qin',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
tp_norm_column_name = 'Tp_norm',
vcmax_norm_column_name = 'Vcmax_norm',
sd_A = 'RMSE',
atp_use = 4.0,
nadph_use = 8.0,
curvature_cj = 1.0,
curvature_cjp = 1.0,
optim_fun = optimizer_deoptim(400),
lower = list(),
upper = list(),
fit_options = list(),
cj_crossover_min = NA,
cj_crossover_max = NA,
require_positive_gmc = 'positive_a',
gmc_max = Inf,
check_j = TRUE,
relative_likelihood_threshold = 0.147,
hard_constraints = 0,
calculate_confidence_intervals = TRUE,
remove_unreliable_param = 2,
...
)
Arguments
- replicate_exdf
An
exdf
object representing one CO2 response curve.- Ca_atmospheric
The atmospheric CO2 concentration (with units of
micromol mol^(-1)
); this will be used byestimate_operating_point
to estimate the operating point. A value ofNA
disables this feature.- a_column_name
The name of the column in
replicate_exdf
that contains the net assimilation inmicromol m^(-2) s^(-1)
.- ca_column_name
The name of the column in
replicate_exdf
that contains the ambient CO2 concentration inmicromol mol^(-1)
.- ci_column_name
The name of the column in
replicate_exdf
that contains the intercellular CO2 concentration inmicromol mol^(-1)
.- etr_column_name
The name of the column in
rc_exdf
that contains the electron transport rate as estimated by the measurement system inmicromol m^(-2) s^(-1)
.- j_norm_column_name
The name of the column in
replicate_exdf
that contains the normalizedJ
values (with units ofnormalized to J at 25 degrees C
).- kc_column_name
The name of the column in
replicate_exdf
that contains the Michaelis-Menten constant for rubisco carboxylation inmicromol mol^(-1)
.- ko_column_name
The name of the column in
replicate_exdf
that contains the Michaelis-Menten constant for rubisco oxygenation inmmol mol^(-1)
.- oxygen_column_name
The name of the column in
replicate_exdf
that contains the concentration of O2 in the ambient air, expressed as a percentage (commonly 21% or 2%); the units must bepercent
.- phips2_column_name
The name of the column in
replicate_exdf
that contains values of the operating efficiency of photosystem II (dimensionless).- qin_column_name
The name of the column in
replicate_exdf
that contains values of the incident photosynthetically active flux density inmicromol m^(-2) s^(-1)
.- rl_norm_column_name
The name of the column in
replicate_exdf
that contains the normalizedRL
values (with units ofnormalized to RL at 25 degrees C
).- total_pressure_column_name
The name of the column in
replicate_exdf
that contains the total pressure inbar
.- tp_norm_column_name
The name of the column in
replicate_exdf
that contains the normalizedTp
values (with units ofnormalized to Tp at 25 degrees C
).- vcmax_norm_column_name
The name of the column in
replicate_exdf
that contains the normalizedVcmax
values (with units ofnormalized to Vcmax at 25 degrees C
).- sd_A
A value of the standard deviation of measured
A
values, or the name of a method for determining the deviation; currently, the only supported option is'RMSE'
.- atp_use
The number of ATP molecules used per C3 cycle.
- nadph_use
The number of NADPH molecules used per C3 cycle.
- curvature_cj
A dimensionless quadratic curvature parameter greater than or equal to 0 and less than or equal to 1 that sets the degree of co-limitation between
Wc
andWj
. A value of 1 indicates no co-limitation.- curvature_cjp
A dimensionless quadratic curvature parameter greater than or equal to 0 and less than or equal to 1 that sets the degree of co-limitation between
Wcj
andWp
. A value of 1 indicates no co-limitation.- optim_fun
An optimization function that accepts the following input arguments: an initial guess, an error function, lower bounds, and upper bounds. It should return a list with the following elements:
par
,convergence
,feval
, andconvergence_msg
. The default option is an evolutionary optimizer that runs slow but tends to find good fits for most curves.optimizer_nmkb
can also be used; it is faster, but doesn't always find a good fit.- lower
A list of named numeric elements representing lower bounds to use when fitting. Values supplied here override the default values (see details below). For example,
lower = list(Vcmax_at_25 = 10)
sets the lower limit forVcmax_at_25
to 10 micromol / m^2 / s.- upper
A list of named numeric elements representing upper bounds to use when fitting. Values supplied here override the default values (see details below). For example,
upper = list(Vcmax_at_25 = 200)
sets the upper limit forVcmax_at_25
to 200 micromol / m^2 / s.- fit_options
A list of named elements representing fit options to use for each parameter. Values supplied here override the default values (see details below). Each element must be
'fit'
,'column'
, or a numeric value. A value of'fit'
means that the parameter will be fit; a value of'column'
means that the value of the parameter will be taken from a column inreplicate_exdf
of the same name; and a numeric value means that the parameter will be set to that value. For example,fit_options = list(alpha_g = 0, Vcmax_at_25 = 'fit', Tp_at_25 = 'column')
means thatalpha_g
will be set to 0,Vcmax_at_25
will be fit, andTp_at_25
will be set to the values in theTp_at_25
column ofreplicate_exdf
.- cj_crossover_min
To be passed to
error_function_c3_variable_j
.- cj_crossover_max
To be passed to
error_function_c3_variable_j
.- require_positive_gmc
To be passed to
error_function_c3_variable_j
.- gmc_max
To be passed to
error_function_c3_variable_j
.- check_j
To be passed to
error_function_c3_variable_j
.- relative_likelihood_threshold
To be passed to
confidence_intervals_c3_variable_j
whencalculate_confidence_intervals
isTRUE
.- hard_constraints
To be passed to
calculate_c3_assimilation
andcalculate_c3_variable_j
; see those functions for more details.- calculate_confidence_intervals
A logical value indicating whether or not to estimate confidence intervals for the fitting parameters using
confidence_intervals_c3_variable_j
.- remove_unreliable_param
An integer value indicating the rules to use when identifying and removing unreliable parameter estimates. A value of 2 is the most conservative option. A value of 0 disables this feature, which is not typically recommended. See below for more details.
- ...
Additional arguments to be passed to
calculate_c3_assimilation
.
Details
This function calls calculate_c3_variable_j
and
calculate_c3_assimilation
to calculate values of net
assimilation. The user-supplied optimization function is used to vary the
values of alpha_g
, alpha_old
, alpha_s
, alpha_t
,
J_at_25
, RL_at_25
, tau
, Tp_at_25
, and
Vcmax_at_25
to find ones that best reproduce the experimentally
measured values of net assimilation. By default, the following options are
used for the fits:
alpha_g
: lower = 0, upper = 10, fit_option = 0alpha_old
: lower = 0, upper = 10, fit_option ='fit'
alpha_s
: lower = 0, upper = 10, fit_option = 0alpha_t
: lower = 0, upper = 10, fit_option = 0Gamma_star
: lower = -20, upper = 200, fit_option ='column'
J_at_25
: lower = -50, upper = 1000, fit_option ='fit'
RL_at_25
: lower = -10, upper = 100, fit_option ='fit'
tau
: lower = -10, upper = 10, fit_option ='fit'
Tp_at_25
: lower = -10, upper = 100, fit_option ='fit'
Vcmax_at_25
: lower = -50, upper = 1000, fit_option ='fit'
With these settings, all "new" alpha
parameters are set to 0, values of
Gamma_star
are taken from the Gamma_star
column of
replicate_exdf
, and the other parameters are fit during the process
(see fit_options
above). The bounds are chosen liberally to avoid any
bias.
An initial guess for the parameters is generated by calling
initial_guess_c3_variable_j
as follows:
cc_threshold_rd
is set to 100 micromol / mol.If
alpha_g
is being fit, thealpha_g
argument ofinitial_guess_c3_aci
is set to 0.5; otherwise, the argument is set to the value specified by the fit options.If
alpha_old
is being fit, thealpha_old
argument ofinitial_guess_c3_aci
is set to 0.5; otherwise, the argument is set to the value specified by the fit options.if
alpha_s
is being fit, thealpha_s
argument ofinitial_guess_c3_aci
is set to0.3 * (1 - alpha_g)
; otherwise, the argument is set to the value specified by the fit options.if
alpha_t
is being fit, thealpha_t
argument ofinitial_guess_c3_aci
is set to 0; otherwise, the argument is set to the value specified by the fit options.If
Gamma_star
is being fit, theGamma_star
argument ofinitial_guess_c3_aci
is set to 40; otherwise, the argument is set to the value specified by the fit options.
Note that any fixed values specified in the fit options will override the values returned by the guessing function.
The fit is made by creating an error function using
error_function_c3_variable_j
and minimizing its value using
optim_fun
, starting from the initial guess described above. The
optimizer_deoptim
optimizer is used by default since it has been
found to reliably return great fits. However, it is a slow optimizer. If speed
is important, consider reducing the number of generations or using
optimizer_nmkb
, but be aware that this optimizer is more likely
to get stuck in a local minimum.
The photosynthesis model used here is not smooth in the sense that small
changes in the input parameters do not necessarily cause changes in its
outputs. This is related to the final step in the calculations, where the
overall assimilation rate is taken to be the minimum of three enzyme-limited
rates. For example, if the assimilation rate is never phosphate-limited,
modifying Tp_at_25
will not change the model's outputs. For this
reason, derivative-based optimizers tend to struggle when fitting C3 A-Ci
curves. Best results are obtained using derivative-free methods.
Sometimes the optimizer may choose a set of parameter values where one or more
of the potential limiting carboxylation rates (Wc
, Wj
, or
Wp
) is never the smallest rate. In this case, the corresponding
parameter estimates (Vcmax
, J
, or alpha
& Tp
)
will be severely unreliable. This will be indicated by a value of 0
in
the corresponding trust column(for example, Vcmax_trust
). If
remove_unreliable_param
is 1
or larger, then such parameter
estimates (and the corresponding rates) will be replaced by NA
in the
fitting results.
It is also possible that the upper limit of the confidence interval for a
parameter is infinity; this indicates a potentially unreliable parameter
estimate. This will be indicated by a value of 1
in the corresponding
trust column (for example, Vcmax_trust
). If
remove_unreliable_param
is 2
or larger, then such parameter
estimates (but not the corresponding rates) will be replaced by NA
in
the fitting results.
The trust value for fully reliable parameter estimates is set to 2
and
they will never be replaced by NA
.
Once the best-fit parameters have been determined, this function also
estimates the operating value of `Cc
from the atmospheric CO2
concentration atmospheric_ca
using
estimate_operating_point
, and then uses that value to estimate
the modeled An
at the operating point via
calculate_c3_assimilation
. It also estimates the
Akaike information criterion (AIC).
This function assumes that replicate_exdf
represents a single
C3 A-Ci curve. To fit multiple curves at once, this function is often used
along with by.exdf
and consolidate
.
Value
A list with two elements:
fits
: Anexdf
object including the original contents ofreplicate_exdf
along with several new columns:The fitted values of net assimilation will be stored in a column whose name is determined by appending
'_fit'
to the end ofa_column_name
; typically, this will be'A_fit'
.Residuals (measured - fitted) will be stored in a column whose name is determined by appending
'_residuals'
to the end ofa_column_name
; typically, this will be'A_residuals'
.Values of fitting parameters at 25 degrees C will be stored in the
J_at_25
,RL_at_25
,Tp_at_25
, andVcmax_at_25
columns.The other outputs from
calculate_c3_variable_j
andcalculate_c3_assimilation
will be stored in columns with the usual names:alpha_g
,alpha_old
,alpha_s
,alpha_t
,tau
,Tp_tl
,Vcmax_tl
,RL_tl
,J_tl
,Ac
,Aj
,Ap
,gmc
,J_F
, andCc
.
fits_interpolated
: Anexdf
object including the calculated assimilation rates at a fine spacing ofCi
values (step size of 1micromol mol^(-1)
).parameters
: Anexdf
object including the identifiers, fitting parameters, and convergence information for the A-Ci curve:The number of points where
An = Ac
,An = Aj
, andAn = Ap
are stored in then_Ac_limiting
,n_Aj_limiting
, andn_Ap_limiting
columns.The best-fit values are stored in the
alpha_g
,alpha_old
,alpha_s
,alpha_t
,tau
,Tp_at_25
,J_at_25
,RL_at_25
, andVcmax_at_25
columns. Ifcalculate_confidence_intervals
isTRUE
, upper and lower limits for each of these parameters will also be included.For parameters that depend on leaf temperature, the average leaf-temperature-dependent values are stored in
X_tl_avg
columns:J_tl_avg
,RL_tl_avg
,Tp_tl_avg
, andVcmax_tl_avg
.Information about the operating point is stored in
operating_Cc
,operating_Ci
,operating_An
, andoperating_An_model
.The
convergence
column indicates whether the fit was successful (==0
) or if the optimizer encountered a problem (!=0
).The
feval
column indicates how many cost function evaluations were required while finding the optimal parameter values.The residual stats as returned by
residual_stats
are included as columns with the default names:dof
,RSS
,RMSE
, etc.The Akaike information criterion is included in the
AIC
column.
Examples
# Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(
PhotoGEA_example_file_path('c3_aci_1.xlsx')
)
# Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-
paste(licor_file[, 'species'], '-', licor_file[, 'plot'] )
# Organize the data
licor_file <- organize_response_curve_data(
licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'
)
# Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)
# Calculate temperature-dependent values of C3 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_bernacchi)
# For these examples, we will use a faster (but sometimes less reliable)
# optimizer so they run faster
optimizer <- optimizer_nmkb(1e-7)
# Fit just one curve from the data set (it is rare to do this).
# \donttest{
one_result <- fit_c3_variable_j(
licor_file[licor_file[, 'species_plot'] == 'tobacco - 1', , TRUE],
Ca_atmospheric = 420,
optim_fun = optimizer
)
# }
# Fit all curves in the data set (it is more common to do this).
aci_results <- consolidate(by(
licor_file,
licor_file[, 'species_plot'],
fit_c3_variable_j,
Ca_atmospheric = 420,
optim_fun = optimizer
))
# View the fitting parameters for each species / plot
col_to_keep <- c(
'species', 'plot', # identifiers
'n_Ac_limiting', 'n_Aj_limiting', 'n_Ap_limiting', # number of points where
# each process is limiting
'tau', 'Tp_at_25', # parameters with temperature response
'J_at_25', 'RL_at_25', 'Vcmax_at_25', # parameters scaled to 25 degrees C
'J_tl_avg', 'RL_tl_avg', 'Vcmax_tl_avg', # average temperature-dependent values
'operating_Ci', 'operating_An', 'operating_An_model', # operating point info
'dof', 'RSS', 'MSE', 'RMSE', 'RSE', # residual stats
'convergence', 'convergence_msg', 'feval', 'optimum_val' # convergence info
)
aci_results$parameters[ , col_to_keep, TRUE]
#> species [UserDefCon] (NA) plot [UserDefCon] (NA)
#> 1 soybean 5a
#> 2 tobacco 1
#> 3 tobacco 2
#> n_Ac_limiting [identify_c3_unreliable_points] ()
#> 1 9
#> 2 10
#> 3 9
#> n_Aj_limiting [identify_c3_unreliable_points] ()
#> 1 3
#> 2 3
#> 3 4
#> n_Ap_limiting [identify_c3_unreliable_points] ()
#> 1 1
#> 2 0
#> 3 0
#> tau [fit_c3_variable_j] (micromol m^(-2) s^(-1))
#> 1 0.4202992
#> 2 0.4202993
#> 3 0.4202992
#> Tp_at_25 [fit_c3_variable_j] (micromol m^(-2) s^(-1))
#> 1 NA
#> 2 NA
#> 3 NA
#> J_at_25 [fit_c3_variable_j] (micromol m^(-2) s^(-1))
#> 1 NA
#> 2 NA
#> 3 NA
#> RL_at_25 [fit_c3_variable_j] (micromol m^(-2) s^(-1))
#> 1 0.4385483
#> 2 0.8163216
#> 3 0.7508451
#> Vcmax_at_25 [fit_c3_variable_j] (micromol m^(-2) s^(-1))
#> 1 NA
#> 2 NA
#> 3 NA
#> J_tl_avg [fit_c3_variable_j] (micromol m^(-2) s^(-1))
#> 1 NA
#> 2 NA
#> 3 NA
#> RL_tl_avg [fit_c3_variable_j] (micromol m^(-2) s^(-1))
#> 1 0.6193304
#> 2 1.1289205
#> 3 1.0442337
#> Vcmax_tl_avg [fit_c3_variable_j] (micromol m^(-2) s^(-1))
#> 1 NA
#> 2 NA
#> 3 NA
#> operating_Ci [estimate_operating_point] (micromol mol^(-1))
#> 1 264.3297
#> 2 294.7032
#> 3 301.2673
#> operating_An [estimate_operating_point] (micromol m^(-2) s^(-1))
#> 1 31.00316
#> 2 37.51608
#> 3 31.57904
#> operating_An_model [fit_c3_variable_j] (micromol m^(-2) s^(-1))
#> 1 30.36570
#> 2 27.28351
#> 3 22.67259
#> dof [residual_stats] (NA) RSS [residual_stats] ((micromol m^(-2) s^(-1))^2)
#> 1 7 26.70033
#> 2 7 418.25493
#> 3 7 332.87525
#> MSE [residual_stats] ((micromol m^(-2) s^(-1))^2)
#> 1 2.053872
#> 2 32.173456
#> 3 25.605788
#> RMSE [residual_stats] (micromol m^(-2) s^(-1))
#> 1 1.433134
#> 2 5.672165
#> 3 5.060216
#> RSE [residual_stats] (micromol m^(-2) s^(-1))
#> 1 1.953032
#> 2 7.729858
#> 3 6.895912
#> convergence [fit_c3_variable_j] () convergence_msg [fit_c3_variable_j] ()
#> 1 0 Successful convergence
#> 2 0 Successful convergence
#> 3 0 Successful convergence
#> feval [fit_c3_variable_j] () optimum_val [fit_c3_variable_j] ()
#> 1 7 1e+10
#> 2 7 1e+10
#> 3 7 1e+10
# View the fits for each species / plot
plot_c3_aci_fit(aci_results, 'species_plot', 'Ci')
# View the residuals for each species / plot
lattice::xyplot(
A_residuals ~ Ci | species_plot,
data = aci_results$fits$main_data,
type = 'b',
pch = 16,
auto = TRUE,
grid = TRUE,
xlab = paste0('Intercellular CO2 concentration (', aci_results$fits$units$Ci, ')'),
ylab = paste0('Assimilation rate residuals (', aci_results$fits$units$A_residuals, ')')
)
# View the estimated mesophyll conductance values for each species / plot
lattice::xyplot(
gmc ~ Ci | species_plot,
data = aci_results$fits$main_data,
type = 'b',
pch = 16,
auto = TRUE,
grid = TRUE,
xlab = paste0('Intercellular CO2 concentration (', aci_results$fits$units$Ci, ')'),
ylab = paste0('Mesophyll conductance to CO2 (', aci_results$fits$units$gmc, ')'),
ylim = c(0, 2)
)
# In some of the curves above, there are no points where carboxylation is TPU
# limited. Estimates of Tp are therefore unreliable and are removed.