Skip to contents padding-top: 70px;

Calculates basic stats (mean and standard error) for each applicable column in an exdf object split up according to the values of one or more identifier columns.

Usage

basic_stats(
    exdf_obj,
    identifier_columns,
    na.rm = TRUE
  )

Arguments

exdf_obj

An exdf object.

identifier_columns

The name(s) of one or more columns in a vector or list that can be used to split exdf_obj into chunks.

na.rm

A logical value indicating whether or not to remove NA values before calculating means and standard errors.

Details

This function first splits up exdf_obj into chunks according to the values of the identifier_columns. For each chunk, columns that have a single unique value are identified and excluded from the statistical calculations. For the remaining numeric columns, the mean and standard error are calculated.

Value

An exdf object including the mean and standard error for each applicable column, where each row represents one value of the identifier_columns. The column names are determined by appending '_avg' and '_stderr' to the original names.

Examples

# Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(
  PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

# Calculate the average assimilation and stomatal conductance values for each
# species. (Note: this is not a meaningful calculation!)
basic_stats(
  licor_file[ , c('species', 'K', 'A', 'gsw'), TRUE],
  'species'
)
#>   species [UserDefCon] (NA) K [Const] (NA)
#> 1                   soybean            0.5
#> 2                   tobacco            0.5
#>   A_avg [GasEx] (micromol m^(-2) s^(-1))
#> 1                               23.82305
#> 2                               17.95311
#>   A_stderr [GasEx] (micromol m^(-2) s^(-1)) gsw_avg [GasEx] (mol m^(-2) s^(-1))
#> 1                                  2.470260                           0.4043737
#> 2                                  3.026751                           0.2192409
#>   gsw_stderr [GasEx] (mol m^(-2) s^(-1))
#> 1                             0.04320554
#> 2                             0.02502419